Previous: Modular ArithmeticUp: Number Theory

Similar Congruences

Table of Contents

1. Similar Congruences

Consider solutions to the simultaneous congruences:

\begin{align} x \equiv a_1 \mod n^{p} \\ x \equiv a_2 \mod n^{q} \end{align}

with \( p >= q \). Now from (1):

\begin{align*} & x - a_1 = \lambda n^{p} & \text{For some \( \lambda \in Z \).} \\ & \Rightarrow x \equiv a_1 \mod n^{q} & \text{using n^{q} | n^{p}} \\ & \Rightarrow a_1 \equiv a_2 \mod n^{q} & \text{} \\ \end{align*}

Hence \( a_1 = a_2 \mod n^{q} \) is a necessary condition for solutions to exist. Suppose this is true, ie:

\begin{align} x \equiv a_1 \mod n^{p} \\ x \equiv a_1 \mod n^{q} \end{align}

Then the set of solutions to (3) are a subset of the set of solutions to (4), hence we need only consider \( x \equiv a_1 \mod n^{p} \).

Author: root

Created: 2024-12-14 Sat 19:47

Validate