Previous: Change Of Basis, Next: EigendecompositionUp: Linear Algebra

Determinants

Table of Contents

1 Definition

We define the determinant of an \( n \times n \) square matrix as follows:

\[ det(A) = \sum_{\sigma \in S_n} sgn(\sigma) \prod_{i=1}^{n} A_{i\sigma(i)} \]

2 Properties

  1. Multiplicity: \( det(AB) = det(A)det(B) \)
  2. Invariant under transposition: \( det(A^T) = det(A) \)

Author: root

Created: 2024-03-23 Sat 11:44

Validate