Previous: Intermediate Value Theorem, Next: Power SeriesUp: Real Analysis

The Limit Superior

Table of Contents

1 Definition

We define the limit superior of a sequence \( a_n \) as follows:

\[ \limsup_{n \to \infty}{a_n} = \lim_{n \to \infty}{\left( \sup_{m \geq n}{a_m} \right)} \]

An equivalent but perhaps more intuitive definition is:

\[ \limsup_{n \to \infty}{a_n} = \sup{S} \]

Where \( S \) is the set of limits of all convergent subsequences of \( a_n \). The limit inferior is defined similarly:

\[ \liminf_{n \to \infty}{a_n} = \lim_{n \to \infty}{\left( \inf_{m \geq n}{a_m} \right)} \]

2 Interpretation

Consider some sequence \( a_n \) where the limit superior is not infinite. Then the limit superior \( b \) is the smallest real number s.t. \( \forall \epsilon > 0 \), there exist only a finite \( n \) s.t. \( a_n > b + \epsilon \).

3 Examples

Define \( a_n = \sin{n\pi} \)

4 Questions

Show that a sequence \( a_n \) converges iff:

\[ \limsup_{n \to \infty}{a_n} = \liminf_{n \to \infty}{a_n} \]

Show that if the sequences \( a_n \) and \( b_n \) are bounded above then:

\[ \limsup_{n \to \infty}{\left(a_n + b_n\right)} \le \limsup_{n \to \infty}{a_n} + \limsup_{n \to \infty}{b_n} \]

and find a similar relation for the limit inferior.

Author: root

Created: 2024-03-23 Sat 11:44

Validate